TSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation.
نویسندگان
چکیده
Tuberous sclerosis complex human disease gene products TSC1 and TSC2 form a functional complex that negatively regulates target of rapamycin (TOR), an evolutionarily conserved kinase that plays a central role in cell growth and metabolism. Here, we describe a novel role of TSC1/2 in controlling stem cell maintenance. We show that in the Drosophila ovary, disruption of either the Tsc1 or Tsc2 gene in germline stem cells (GSCs) leads to precocious GSC differentiation and loss. The GSC loss can be rescued by treatment with TORC1 inhibitor rapamycin, or by eliminating S6K, a TORC1 downstream effecter, suggesting that precocious differentiation of Tsc1/2 mutant GSC is due to hyperactivation of TORC1. One well-studied mechanism for GSC maintenance is that BMP signals from the niche directly repress the expression of a differentiation-promoting gene bag of marbles (bam) in GSCs. In Tsc1/2 mutant GSCs, BMP signalling activity is downregulated, but bam expression is still repressed. Moreover, Tsc1 bam double mutant GSCs could differentiate into early cystocytes, suggesting that TSC1/2 controls GSC differentiation via both BMP-Bam-dependent and -independent pathways. Taken together, these results suggest that TSC prevents precocious GSC differentiation by inhibiting TORC1 activity and subsequently differentiation-promoting programs. As TSC1/2-TORC1 signalling is highly conserved from Drosophila to mammals, it could have a similar role in controlling stem cell behaviour in mammals, including humans.
منابع مشابه
Notch-Mediated Suppression of TSC2 Expression Regulates Cell Differentiation in the Drosophila Intestinal Stem Cell Lineage
Epithelial homeostasis in the posterior midgut of Drosophila is maintained by multipotent intestinal stem cells (ISCs). ISCs self-renew and produce enteroblasts (EBs) that differentiate into either enterocytes (ECs) or enteroendocrine cells (EEs) in response to differential Notch (N) activation. Various environmental and growth signals dynamically regulate ISC activity, but their integration wi...
متن کاملTSC1/2 regulates intestinal stem cell maintenance and lineage differentiation through Rheb-TORC1-S6K but independently of nutritional status or Notch regulation.
Tubular sclerosis complex gene products TSC1 and TSC2 have evolutionarily conserved roles in cell growth from Drosophila to mammals. Here we reveal important roles for TSC1/2 in regulating intestinal stem cell (ISC) maintenance and differentiation of the enteroendocrine cell lineage in the Drosophila midgut. Loss of either the Tsc1 or Tsc2 gene in ISCs causes rapid ISC loss through TORC1 hypera...
متن کاملEpigenetic regulation of stem cell maintenance in the Drosophila testis via the nucleosome-remodeling factor NURF.
Regulation of stem cells depends on both tissue-specific transcriptional regulators and changes in chromatin organization, yet the coordination of these events in endogenous niches is poorly understood. In the Drosophila testis, local JAK-STAT signaling maintains germline and somatic stem cells (GSCs and cyst progenitor cells, or CPCs) in a single niche. Here we show that epigenetic regulation ...
متن کاملThree RNA Binding Proteins Form a Complex to Promote Differentiation of Germline Stem Cell Lineage in Drosophila
In regenerative tissues, one of the strategies to protect stem cells from genetic aberrations, potentially caused by frequent cell division, is to transiently expand the stem cell daughters before further differentiation. However, failure to exit the transit amplification may lead to overgrowth, and the molecular mechanism governing this regulation remains vague. In a Drosophila mutagenesis scr...
متن کاملExpression of wild type and mutant TSC2, but not TSC1, causes an increase in the G1 fraction of the cell cycle in HEK293 cells.
Tuberous sclerosis complex (TSC) is a tumour suppressor gene syndrome whose manifestations include seizures, mental retardation, autism, and tumours of the brain, retina, kidney, heart, and skin. Mutations in two tumour suppressor genes, TSC1 on chromosome 9q34 and TSC2 on chromosome 16p13, cause TSC. TSC2 encodes tuberin, a 190 kDa protein with homology to the catalytic domain of a GTPase acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 15 شماره
صفحات -
تاریخ انتشار 2010